Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.335
Filtrar
1.
Biochemistry ; 63(7): 880-892, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501608

RESUMO

Ras-related nuclear protein (Ran) is a member of the Ras superfamily of small guanosine triphosphatases (GTPases) and a regulator of multiple cellular processes. In healthy cells, the GTP-bound form of Ran is concentrated at chromatin, creating a Ran•GTP gradient that provides the driving force for nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. The Ran•GTP gradient is maintained by the regulator of chromatin condensation 1 (RCC1), a guanine nucleotide exchange factor that accelerates GDP/GTP exchange in Ran. RCC1 interacts with nucleosomes, which are the fundamental repeating units of eukaryotic chromatin. Here, we present a cryo-EM analysis of a trimeric complex composed of the nucleosome core particle (NCP), RCC1, and Ran. While the contacts between RCC1 and Ran in the complex are preserved compared with a previously determined structure of RCC1-Ran, our study reveals that RCC1 and Ran interact dynamically with the NCP and undergo rocking motions on the nucleosome surface. Furthermore, the switch 1 region of Ran, which plays an important role in mediating conformational changes associated with the substitution of GDP and GTP nucleotides in Ras family members, appears to undergo disorder-order transitions and forms transient contacts with the C-terminal helix of histone H2B. Nucleotide exchange assays performed in the presence and absence of NCPs are not consistent with an active role for nucleosomes in nucleotide exchange, at least in vitro. Instead, the nucleosome stabilizes RCC1 and serves as a hub that concentrates RCC1 and Ran to promote efficient Ran•GDP to Ran•GTP conversion.


Assuntos
Cromatina , Nucleossomos , Proteína ran de Ligação ao GTP , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Nucleotídeos/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Humanos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo
2.
Protein Sci ; 33(4): e4937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501488

RESUMO

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Assuntos
Clostridium thermocellum , 60634 , Clostridium thermocellum/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Complexos Multienzimáticos , Proteínas de Bactérias/química
3.
Nature ; 627(8003): 437-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383789

RESUMO

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Homeostase , Membranas Intracelulares/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , RNA de Transferência/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
4.
J Biol Chem ; 300(3): 105751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354779

RESUMO

Eukaryotic DNA clamp is a trimeric protein featuring a toroidal ring structure that binds DNA on the inside of the ring and multiple proteins involved in DNA transactions on the outside. Eukaryotes have two types of DNA clamps: the replication clamp PCNA and the checkpoint clamp RAD9-RAD1-HUS1 (9-1-1). 9-1-1 activates the ATR-CHK1 pathway in DNA damage checkpoint, regulating cell cycle progression. Structure of 9-1-1 consists of two moieties: a hetero-trimeric ring formed by PCNA-like domains of three subunits and an intrinsically disordered C-terminal region of the RAD9 subunit, called RAD9 C-tail. The RAD9 C-tail interacts with the 9-1-1 ring and disrupts the interaction between 9-1-1 and DNA, suggesting a negative regulatory role for this intramolecular interaction. In contrast, RHINO, a 9-1-1 binding protein, interacts with both RAD1 and RAD9 subunits, positively regulating checkpoint activation by 9-1-1. This study presents a biochemical and structural analysis of intra- and inter-molecular interactions on the 9-1-1 ring. Biochemical analysis indicates that RAD9 C-tail binds to the hydrophobic pocket on the PCNA-like domain of RAD9, implying that the pocket is involved in multiple protein-protein interactions. The crystal structure of the 9-1-1 ring in complex with a RHINO peptide reveals that RHINO binds to the hydrophobic pocket of RAD9, shedding light on the RAD9-binding motif. Additionally, the study proposes a structural model of the 9-1-1-RHINO quaternary complex. Together, these findings provide functional insights into the intra- and inter-molecular interactions on the front side of RAD9, elucidating the roles of RAD9 C-tail and RHINO in checkpoint activation.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Complexos Multiproteicos , Subunidades Proteicas , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Interações Hidrofóbicas e Hidrofílicas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Domínios Proteicos
5.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38261971

RESUMO

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Assuntos
Proteínas de Ciclo Celular , Antígeno Nuclear de Célula em Proliferação , Proteínas de Schizosaccharomyces pombe , Sítios de Ligação , Replicação do DNA , Proteínas Intrinsicamente Desordenadas/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ribonucleotídeo Redutases/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
6.
Science ; 382(6675): 1184-1190, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060647

RESUMO

Kinetochores couple chromosomes to the mitotic spindle to segregate the genome during cell division. An error correction mechanism drives the turnover of kinetochore-microtubule attachments until biorientation is achieved. The structural basis for how kinetochore-mediated chromosome segregation is accomplished and regulated remains an outstanding question. In this work, we describe the cryo-electron microscopy structure of the budding yeast outer kinetochore Ndc80 and Dam1 ring complexes assembled onto microtubules. Complex assembly occurs through multiple interfaces, and a staple within Dam1 aids ring assembly. Perturbation of key interfaces suppresses yeast viability. Force-rupture assays indicated that this is a consequence of impaired kinetochore-microtubule attachment. The presence of error correction phosphorylation sites at Ndc80-Dam1 ring complex interfaces and the Dam1 staple explains how kinetochore-microtubule attachments are destabilized and reset.


Assuntos
Proteínas de Ciclo Celular , Cinetocoros , Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/química , Segregação de Cromossomos , Microscopia Crioeletrônica , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Conformação Proteica
7.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37820732

RESUMO

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Assuntos
Proteínas de Ciclo Celular , DNA Helicases , Proteínas Nucleares , Animais , Humanos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Ativação Enzimática
8.
ACS Chem Neurosci ; 14(15): 2583-2589, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37433222

RESUMO

Mutations in the proline-rich domain (PRD) of annexin A11 are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, and generate abundant neuronal A11 inclusions by an unknown mechanism. Here, we demonstrate that recombinant A11-PRD and its ALS-associated variants form liquidlike condensates that transform into ß-sheet-rich amyloid fibrils. Surprisingly, these fibrils dissolved in the presence of S100A6, an A11 binding partner overexpressed in ALS. The ALS variants of A11-PRD showed longer fibrillization half-times and slower dissolution, even though their binding affinities for S100A6 were not significantly affected. These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. These ALS-A11 variants are thus more likely to remain aggregated despite their slower fibrillization.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Anexinas/genética , Solubilidade , Amiloide/metabolismo , Prolina/genética , Proteína A6 Ligante de Cálcio S100 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
9.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 758-774, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432115

RESUMO

The bromodomain and extra-terminal (BET) family proteins, which are involved in chromatin function, have been shown to be promising drug targets in several pathological conditions, including cancer and inflammation. There is considerable interest in the development of BET inhibitors with novel scaffolds to modulate the epigenesis of such diseases. Here, high-resolution crystal structures of the purine class of FDA-approved drugs (theophylline, doxophylline and acyclovir) and non-FDA-approved compounds (3-methyl-7-propylxanthine and theobromine) complexed with hBRD2 bromodomains BD1 and BD2 are reported. Remarkably, a new binding site is exhibited by stacking the compounds against the WPF shelf of BD1 and BD2. This serendipitous binding, in addition to the known acetyl-lysine binding site, sufficiently anchors the ligands in the solvent-exposed region. In addition, slight variations in the lipophilicity of these molecules significantly affected the in vitro binding affinity and selectivity towards BD1 compared with BD2. This idiosyncratic binding provides a new structural framework to link these sites for the development of next-generation inhibitors of the BET family.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Domínios Proteicos , Sítios de Ligação , Purinas/farmacologia , Proteínas de Ciclo Celular/química
10.
Plant Cell Rep ; 42(8): 1279-1290, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178216

RESUMO

KEY MESSAGE: SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice. The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.


Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitina-Proteína Ligases/genética , Divisão Celular , Hormônios
11.
Nat Rev Mol Cell Biol ; 24(9): 633-650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231112

RESUMO

Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.


Assuntos
Cromatina , Cromossomos , Cromossomos/genética , Cromossomos/metabolismo , Cromatina/genética , DNA/genética , Replicação do DNA/genética , Mitose , Proteínas de Ciclo Celular/química
12.
Protein Sci ; 32(3): e4572, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691744

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase and its cofactor, Cdh1, regulate the expression of several cell-cycle proteins and their functions during mitosis. Levels of the protein cell division cycle-associated protein 3 (CDCA3), which is functionally required for mitotic entry, are regulated by APC/CCdh1 . CDCA3 is an intrinsically disordered protein and contains both C-terminal KEN box and D-box recognition motifs, enabling binding to Cdh1. Our previous findings demonstrate that CDCA3 has a phosphorylation-dependent non-canonical ABBA-like motif within the linker region bridging these two recognition motifs and is required for efficient binding to Cdh1. Here, we sought to identify and further characterize additional residues that participate within this ABBA-like motif using detailed in vitro experiments and in silico modeling studies. We identified the role of H-bonds, hydrophobic and ionic interactions across the CDCA3 ABBA-like motif in the linker region between KEN and D-box motifs. This linker region adopts a well-defined structure when bound to Cdh1 in the presence of phosphorylation. Upon alanine mutation, the structure of this region is lost, leading to higher flexibility, and alteration in affinities due to binding to alternate sites on Cdh1. Our findings identify roles for the anchoring residues in the non-canonical ABBA-like motif to promote binding to the APC/CCdh1 and regulation of CDCA3 protein levels.


Assuntos
Proteínas de Ciclo Celular , Simulação de Dinâmica Molecular , Proteínas Cdh1/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/química , Ciclo Celular
13.
Expert Opin Drug Discov ; 18(1): 65-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524399

RESUMO

INTRODUCTION: Polo Like Kinase 1 (PLK1) is a key regulator of mitosis and its overexpression is frequently observed in a wide variety of human cancers, while often being associated with poor survival rates. Therefore, it is considered a potential and attractive target for cancer therapeutic development. The Polo like kinase family is characterized by the presence of a unique C terminal polobox domain (PBD) involved in regulating kinase activity and subcellular localization. Among the two functionally essential, druggable sites with distinct properties that PLK1 offers, targeting the PBD presents an alternative approach for therapeutic development. AREAS COVERED: Significant progress has been made in progressing from the peptidic PBD inhibitors first identified, to peptidomimetic and recently drug-like small molecules. In this review, the rationale for targeting the PBD over the ATP binding site is discussed, along with recent progress, challenges, and outlook. EXPERT OPINION: The PBD has emerged as a viable alternative target for the inhibition of PLK1, and progress has been made in using compounds to elucidate mechanistic aspects of activity regulation and in determining roles of the PBD. Studies have resulted in proof of concept of in vivo efficacy suggesting promise for PBD binders in clinical development.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Neoplasias/tratamento farmacológico , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
14.
Nat Commun ; 13(1): 7698, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36509793

RESUMO

The cohesin complex participates in many structural and functional aspects of genome organization. Cohesin recruitment onto chromosomes requires nucleosome-free DNA and the Scc2-Scc4 cohesin loader complex that catalyzes topological cohesin loading. Additionally, the cohesin loader facilitates promoter nucleosome clearance in a yet unknown way, and it recognizes chromatin receptors such as the RSC chromatin remodeler. Here, we explore the cohesin loader-RSC interaction. Amongst multi-pronged contacts by Scc2 and Scc4, we find that Scc4 contacts a conserved patch on the RSC ATPase motor module. The cohesin loader directly stimulates in vitro nucleosome sliding by RSC, providing an explanation how it facilitates promoter nucleosome clearance. Furthermore, we observe cohesin loader interactions with a wide range of chromatin remodelers. Our results provide mechanistic insight into how the cohesin loader recognizes, as well as influences, the chromatin landscape, with implications for our understanding of human developmental disorders including Cornelia de Lange and Coffin-Siris syndromes.


Assuntos
Micrognatismo , Proteínas de Saccharomyces cerevisiae , Humanos , Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Nucleossomos , Segregação de Cromossomos
15.
J Biol Chem ; 298(9): 102319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926712

RESUMO

B-Myb is a highly conserved member of the vertebrate Myb family of transcription factors that plays a critical role in cell-cycle progression and proliferation. Myb proteins activate Myb-dependent promoters by interacting specifically with Myb-binding site (MBS) sequences using their DNA-binding domain (DBD). Transactivation of MBS promoters by B-Myb is repressed by its negative regulatory domain (NRD), and phosphorylation of the NRD by Cdk2-CyclinA relieves the repression to activate B-Myb-dependent promoters. However, the structural mechanisms underlying autoinhibition and activation of B-Myb-mediated transcription have been poorly characterized. Here, we determined that a region in the B-Myb NRD (residues 510-600) directly associates with the DBD and inhibits binding of the DBD to the MBS DNA sequence. We demonstrate using biophysical assays that phosphorylation of the NRD at T515, T518, and T520 is sufficient to disrupt the interaction between the NRD and the DBD, which results in increased affinity for MBS DNA and increased B-Myb-dependent promoter activation in cell assays. Our biochemical characterization of B-Myb autoregulation and the activating effects of phosphorylation provide insight into how B-Myb functions as a site-specific transcription factor.


Assuntos
Proteínas de Ciclo Celular , Quinase 2 Dependente de Ciclina , DNA , Transativadores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , DNA/metabolismo , Humanos , Fosforilação , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Ativação Transcricional
16.
J Am Chem Soc ; 144(33): 15303-15313, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35945166

RESUMO

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target. Of particular interest is the FtsQB subcomplex that plays a decisive role in divisome assembly and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of a macrocyclic covalent inhibitor derived from a periplasmic region of FtsB that mediates its binding to FtsQ. The bioactive conformation of this motif was stabilized by a customized cross-link resulting in a tertiary structure mimetic with increased affinity for FtsQ. To increase activity, a covalent handle was incorporated, providing an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer membrane-permeable E. coli strain, concurrent with the expected loss of FtsB localization, and also affected the infection of zebrafish larvae by a clinical E. coli strain. This first-in-class inhibitor of a divisome protein-protein interaction highlights the potential of proteomimetic molecules as inhibitors of challenging targets. In particular, the covalent mode-of-action can serve as an inspiration for future antibiotics that target protein-protein interactions.


Assuntos
Proteínas de Escherichia coli , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Peixe-Zebra/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(33): e2206888119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960842

RESUMO

Self-organized pattern formation is vital for many biological processes. Reaction-diffusion models have advanced our understanding of how biological systems develop spatial structures, starting from homogeneity. However, biological processes inherently involve multiple spatial and temporal scales and transition from one pattern to another over time, rather than progressing from homogeneity to a pattern. To deal with such multiscale systems, coarse-graining methods are needed that allow the dynamics to be reduced to the relevant degrees of freedom at large scales, but without losing information about the patterns at small scales. Here, we present a semiphenomenological approach which exploits mass conservation in pattern formation, and enables reconstruction of information about patterns from the large-scale dynamics. The basic idea is to partition the domain into distinct regions (coarse grain) and determine instantaneous dispersion relations in each region, which ultimately inform about local pattern-forming instabilities. We illustrate our approach by studying the Min system, a paradigmatic model for protein pattern formation. By performing simulations, we first show that the Min system produces multiscale patterns in a spatially heterogeneous geometry. This prediction is confirmed experimentally by in vitro reconstitution of the Min system. Using a recently developed theoretical framework for mass-conserving reaction-diffusion systems, we show that the spatiotemporal evolution of the total protein densities on large scales reliably predicts the pattern-forming dynamics. Our approach provides an alternative and versatile theoretical framework for complex systems where analytical coarse-graining methods are not applicable, and can, in principle, be applied to a wide range of systems with an underlying conservation law.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Proteínas de Escherichia coli , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Difusão , Proteínas de Escherichia coli/química , Modelos Teóricos
18.
PLoS One ; 17(8): e0270572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35930764

RESUMO

Cell-cycle dependent proteins are indispensible for the accurate division of cells, a group of proteins called Microtubule-associated proteins (MAPs) are important to cell division as it bind microtubules and participate with other co-factors to form the spindle midbody, which works as the workhorse of cell-division. PRC1 is a distinguishing member of MAPs, as it is a human MAP and works as the key in mediating daughter cell segregation in ana-phase and telo-phase. The physiological significance of PRC1 calls for a high resolution three-dimensional structure. The crystal structure of PRC1 was published but has low resolution (>3 Å) and incomplete sidechains, placing hurdles to understanding the structure-function relationships of PRC1, therefore, we determined the high-resolution solution structure of PRC1's dimerization domain using NMR spectroscopy. Significant differences between the crystal structure and the solution structure can be observed, the main differences center around the N terminus and the end of the alpha-Helix H2. Furthermore, detailed structure analyses revealed that the hydrophobic core packing of the solution and crystal structures are also different. To validate the solution structure, we used Hydrogen-deuterium exchange experiments that address the structural discrepancies between the crystal and solution structure; we also generated mutants that are key to the differences in the crystal and solution structures, measuring its structural or thermal stability by NMR spectroscopy and Fluorescence Thermal Shift Assays. These results suggest that N terminal residues are key to the integrity of the whole protein, and the solution structure of the dimerization domain better reflects the conformation PRC1 adopted in solution conditions.


Assuntos
Proteínas de Ciclo Celular , Microtúbulos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Dimerização , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Domínios Proteicos
19.
J Mol Biol ; 434(19): 167756, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870648

RESUMO

Histone chaperones, which constitute an interaction and functional network involved in all aspects of histone metabolism, have to date been identified only in eukaryotes. The Epstein-Barr virus tegument protein BKRF4 is a histone-binding protein that engages histones H2A-H2B and H3-H4, and cellular chromatin, inhibiting the host DNA damage response. Here, we identified BKRF4 as a bona fide viral histone chaperone whose histone-binding domain (HBD) forms a co-chaperone complex with the human histone chaperone ASF1 in vitro. We determined the crystal structures of the quaternary complex of the BKRF4 HBD with human H3-H4 dimer and the histone chaperone ASF1b and the ternary complex of the BKRF4 HBD with human H2A-H2B dimer. Through structural and biochemical studies, we elucidated the molecular basis for H3-H4 and H2A-H2B recognition by BKRF4. We also revealed two conserved motifs, D/EL and DEF/Y/W, within the BKRF4 HBD, which may represent common motifs through which histone chaperones target H3-H4 and H2A-H2B, respectively. In conclusion, our results identify BKRF4 as a histone chaperone encoded by the Epstein-Barr virus, representing a typical histone chaperone found in a non-eukaryote. We envision that more histone chaperones await identification and characterization in DNA viruses and even archaea.


Assuntos
Proteínas do Capsídeo , Proteínas de Ciclo Celular , Herpesvirus Humano 4 , Chaperonas de Histonas , Proteínas do Capsídeo/química , Proteínas de Ciclo Celular/química , Cromatina/química , Herpesvirus Humano 4/genética , Chaperonas de Histonas/química , Histonas/metabolismo , Humanos , Ligação Proteica , Conformação Proteica
20.
J Am Chem Soc ; 144(29): 13218-13225, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819848

RESUMO

Protein-protein interactions (PPIs) form complex networks to drive cellular signaling and cellular functions. Precise modulation of a target PPI helps explain the role of the PPI in cellular events and possesses therapeutic potential. For example, valosin-containing protein (VCP/p97) is a hub protein that interacts with more than 30 adaptor proteins involved in various cellular functions. However, the role of each p97 PPI during the relevant cellular event is underexplored. The development of small-molecule PPI modulators remains challenging due to a lack of grooves and pockets in the relatively large PPI interface and the fact that a common binding groove in p97 binds to multiple adaptors. Here, we report an antibody fragment-based modulator for the PPI between p97 and its adaptor protein NSFL1C (p47). We engineered these antibody modulators by phage display against the p97-interacting domain of p47 and minimizing binding to other p97 adaptors. The selected antibody fragment modulators specifically disrupt the intracellular p97/p47 interaction. The potential of this antibody platform to develop PPI inhibitors in therapeutic applications was demonstrated through the inhibition of Golgi reassembly, which requires the p97/p47 interaction. This study presents a unique approach to modulate specific intracellular PPIs using engineered antibody fragments, demonstrating a method to dissect the function of a PPI within a convoluted PPI network.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Fragmentos de Imunoglobulinas , Ligação Proteica , Proteína com Valosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...